On high order finite element spaces of differential forms
نویسندگان
چکیده
We show how the high order finite element spaces of differential forms due to Raviart-Thomas-Nédelec-Hiptmair fit into the framework of finite element systems, in an elaboration of the finite element exterior calculus of Arnold-Falk-Winther. Based on observations by Bossavit, we provide new low order degrees of freedom. As an alternative to existing choices of bases, we provide canonical resolutions in terms of scalar polynomials and Whitney forms. MSC: 65N30, 58A10.
منابع مشابه
Finite element differential forms
A differential form is a field which assigns to each point of a domain an alternating multilinear form on its tangent space. The exterior derivative operation, which maps differential forms to differential forms of the next higher order, unifies the basic first order differential operators of calculus, and is a building block for a great variety of differential equations. When discretizing such...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملTitle : Finite Element Differential Forms on Simplices and Cubes
s of Invited Lectures Title: Finite Element Differential Forms on Simplices and Cubes Speaker: Douglas N. Arnold Affiliation: University of Minnesota, USA Email: [email protected] Abstract: Many applications require finite element discretizations of the spaces of differential forms comprising the de Rham complex. In three dimensions, this means constructing finite element subspaces of H, H(curl), ...
متن کاملStability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension
We elaborate on the interpretation of some mixed finite element spaces in terms of differential forms. First we develop a framework in which we show how tools from algebraic topology can be applied to the study of their cohomological properties. The analysis applies in particular to certain hp finite element spaces, extending results in trivial topology often referred to as the exact sequence p...
متن کاملCanonical construction of finite elements
The mixed variational formulation of many elliptic boundary value problems involves vector valued function spaces, like, in three dimensions, H(curl; Ω) and H(Div;Ω). Thus finite element subspaces of these function spaces are indispensable for effective finite element discretization schemes. Given a simplicial triangulation of the computational domain Ω, among others, Raviart, Thomas and Nédéle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 85 شماره
صفحات -
تاریخ انتشار 2016